Prediction of Seismic Activities in Coal Mines using Decision Tree based Ensemble Learning
نویسندگان
چکیده
منابع مشابه
Fault Detection in Ring Based Smart LVDC Microgrid Using Ensemble of Decision Tree
In modern infrastructure, the demand for DC power-based appliances is rapidly increasing, and this phenomenon has created a positive impact on the acceptance of the DC microgrid. However, due to numerous issues such as the absence of zero crossing, bidirectional behaviour of sources, and different magnitudes of fault current during grid connected and islanded modes of operation, protecting DC m...
متن کاملApplication of rule-based models for seismic hazard prediction in coal mines
The paper presents results of application of a machine learning method, namely the induction of classification and regression rules, for seismic hazard prediction in coal mines. The main aim of this research was to verify if machine learning methods would be able to predict seismic hazard more accurately than methods routinely used in Polish coal mines on the basis of data gathered by monitorin...
متن کاملProteomic mass spectra classification using decision tree based ensemble methods
MOTIVATION Modern mass spectrometry allows the determination of proteomic fingerprints of body fluids like serum, saliva or urine. These measurements can be used in many medical applications in order to diagnose the current state or predict the evolution of a disease. Recent developments in machine learning allow one to exploit such datasets, characterized by small numbers of very high-dimensio...
متن کاملEcg Signal Classification Using Ensemble Decision Tree
The electrocardiogram (ECG) is a non-invasive method to measure and record the electrical activity of the heart. ECG signal analysis has an important role on the diagnosis of heart diseases especially, abnormal or irregular heartbeats, namely arrhythmia. There are three basic waves; P, QRS and T in healthy EGC signal. The detection of these waves and time domain morphological properties represe...
متن کاملAutomatic feature subset selection for decision tree-based ensemble methods in the prediction of bioactivity
a r t i c l e i n f o In the structure–activity relationship (SAR) study, a learning algorithm is usually faced with the problem of selecting a compact subset of descriptors related to the property of interest, while ignoring the rest. This paper presents a new method of molecular descriptor selection utilizing three commonly used decision tree (DT)-based ensemble methods coupled with a backwar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal for Research in Applied Science and Engineering Technology
سال: 2018
ISSN: 2321-9653
DOI: 10.22214/ijraset.2018.6056